# **CO<sub>2</sub> Capture Systems Using Amine Enhanced Solid Sorbents**



Thomas J. Tarka<sup>1</sup>
Jared P. Ciferno<sup>2</sup>
McMahan L. Gray<sup>2</sup>
Daniel Fauth<sup>2</sup>

1: Energetics, Incorporated

<sup>2</sup>: National Energy Technology Laboratory (NETL)

5<sup>th</sup> Annual Conference on Carbon Capture & Sequestration





## **Systems Analysis Objective**

Analyze Detailed Component Costs for Capture & Storage to:

- Determine where the R&D should be focused
  - Includes both NETL in-house R & D and Externally Funded R & D
- Determine "best case" potential for R&D technologies



## Systems Analysis Objective: Scale-Up

### **Laboratory Scale**



Technically Possible?

Scale-up

Economically Feasible?

500 MW Commercial Power Plant



- 0.1 ft<sup>3</sup> Reactor Volume
- 0.27 scf per minute

- 57,000 ft<sup>3</sup> Reactor Volume
- 1,200,000 scf per minute



## Systems Analysis Level of Detail



### **Amine Enhanced Sorbents**

- Use the same type of amine chemicals as found in conventional wet scrubbers
- Amine molecules attached to solid pellets rather than dissolved in water



#### Substrate

- Meso-porous silica (SBA-15), PMMA, etc.
- Amine binds to hydroxyl (-OH) sites on surface

### Amine

Testing primary, secondary, and tertiary



## **Amine Enhanced Sorbent Advantages**

### 1. Uses less energy

- ↓ Heat Capacity (Do not need to heat water)
- Use less stripping steam to regenerate CO<sub>2</sub>

#### **Amine Enhanced Sorbents**

Heat Capacity (Btu/lb-°F) 0.3

**∆T Regeneration** 80°F

Regeneration Energy (Btu/lb CO<sub>2</sub>)

Sensible 40
Reaction + 580\*
Vaporization + 0

Total = 620

### 30% MEA [1]

Heat Capacity (Btu/lb-°F) 0.9

△T Regeneration 105°F

VS.

| Regeneration Energy (Btu/lb CO <sub>2</sub> ) |         |  |  |  |  |
|-----------------------------------------------|---------|--|--|--|--|
| Sensible                                      | 941     |  |  |  |  |
| Reaction                                      | + 703   |  |  |  |  |
| Vaporization                                  | + 290   |  |  |  |  |
| Total                                         | = 1,934 |  |  |  |  |

#### Reference:



<sup>1.</sup> Gottlicher,G., *The Energetics of Carbon Dioxide Capture in Power Plants*, U.S. Department of Energy, National Energy Technology Laboratory, 1999

## **Amine Enhanced Sorbent Advantages**

### 2. Higher CO<sub>2</sub> carrying capacity per lb of sorbent

|                                                                         | 30% MEA         | Amine Sorbent   |
|-------------------------------------------------------------------------|-----------------|-----------------|
| Density (lb/ft³)                                                        | 22              | 44              |
| Working Capacity (lb CO <sub>2</sub> /lb sorbent)                       | 0.052           | 0.264           |
| Mass sorbent per pound CO <sub>2</sub>                                  | 19 lbs solution | 3.8 lbs sorbent |
| Volume per Pound CO <sub>2</sub> (ft <sup>3</sup> /lb CO <sub>2</sub> ) | 0.8             | 0.08            |



10x decrease in volume to treat equivalent amount of CO<sub>2</sub>

VS.





# PC with Amine Enhanced Sorbent CO<sub>2</sub> Capture Where does it fit?





\*Decreased separation driving force



# Technical Approach Overview

### 1. CO<sub>2</sub> Capture System Conceptual Design

- Model fixed and fluidized bed systems
  - Standard mass and energy balance around CO<sub>2</sub> removal process
  - △P calculated from "Unit Operations of Chemical Engineering", McCabe, Smith, and Harriot, 5<sup>th</sup> Ed."
  - Perform heat integration and performance optimization
  - Preliminary absorber design based on boundary conditions
- Calculate parasitic power load for CO<sub>2</sub> removal system
  - CO<sub>2</sub> compression load
  - Lost power due to steam use in sorbent regeneration
  - Sorbent transport load
  - Fan load to overcome pressure drop

### 2. Integrate CO<sub>2</sub> Capture system into existing plant

- Determine impact on plant performance (cost and efficiency)
- Spreadsheet approach → Uses existing power plant designs



## **Technical Approach**

Overview (continued)

# 3. Enter performance and cost data into NETL Economic Model

- EXCEL Spreadsheet based
- Builds on previous analyses and allows comparison with other technologies reviewed

### 4. Perform sensitivity analyses to optimize system design





## **Technical Approach**

### Design Constraints

### 1. Flue gas flow rate of 1,200,000 acfm

- Based on a 400 MW<sub>net</sub> Supercritical PC Plant
- 14 vol% CO<sub>2</sub>
- 130° F, 14-17 psia

### 2. 90% CO<sub>2</sub> removal efficiency

- DOE Program Goal
- Equates to 9,000 tons of CO<sub>2</sub> per day

### 3. Pressure drop of less than 6 psi

Double that of MEA System

### 4. Geometry

- Maximum absorber diameter of 30 ft
- Maximum absorber height of 100 ft
- Footprint of less than 10,000 ft<sup>2</sup>





# Amine Enhanced Solid Sorbent Specification

#### 1. SBA-15 Silica Substrate

Particle Diameter: 50-100 μm

• Density: **2.6 g/cm**<sup>3</sup>

**2**. Capacity: 6 moles CO<sub>2</sub> per kg sorbent

3. Cost Estimate: \$10/kg of sorbent

4. Regen Time: 30-60 minutes

### 5. Operating Conditions

Absorption: 120-160° F

Regeneration: 230-250° F

6. Replacement: Every 2 years





## **Challenges to Implementation**

### 1. <u>Pressure Drop....Pressure Drop!</u>

- Treating 1,200,000 acfm of flue gas
- Capturing 9,000 Tons/day of CO<sub>2</sub> (400 MW<sub>net</sub> power plant)
- Sorbent diameter is very small: 50-100 μm
- Result: Large pressure drop (6 psi) for short beds (12")

### 2. Regeneration Time

- >30 minutes! → Keep regeneration temperatures low to prevent loss of amine groups
- Results in large regeneration vessels

### 3. Sorbent cost and attrition rate

### 4. Heat management

- Absorbtion is exothermic
- Heat transfer in a fixed bed is poor



## **Novel System Design**

Explore other commercial absorber designs that deal with pressure drop problems.



# Design Results Fixed Bed

- Large pressure drop (~6 psi)
- Large number of absorber vessels (50+)
- Very thin sorbent beds ( < 26 inches)</li>
- Large footprint unless units are stacked (~50,000 ft²)
- Chosen reactor geometry will not work
  - 30 ft diameter column with 26 inch bed height!

| Flue Gas Flow Rate<br>per Unit (acfm) | Max<br>Bed Height<br>(inches) | CO <sub>2</sub> Capacity<br>per Absorber (lbs) | T <sub>breakthrough</sub><br>(mins) | Parallel<br>Streams | Absorbers<br>per Stream | Total Number<br>of Absorbers | Total Sorbent<br>Mass (tonnes) | Footprint<br>(ft²) |
|---------------------------------------|-------------------------------|------------------------------------------------|-------------------------------------|---------------------|-------------------------|------------------------------|--------------------------------|--------------------|
| 45,000                                | 25.3                          | 27,200                                         | 60                                  | 27                  | 2                       | 53                           | 2,330                          | 47,700             |
| 62,700                                | 17.7                          | 18,980                                         | 30                                  | 19                  | 3                       | 57                           | 1,750                          | 51,300             |
| 76,000                                | 14.3                          | 15,340                                         | 20                                  | 16                  | 4                       | 63                           | 1,560                          | 56,700             |
| 87,000                                | 12.3                          | 13,180                                         | 15                                  | 14                  | 5                       | 69                           | 1,470                          | 62,100             |
| 96,500                                | 10.9                          | 11,720                                         | 12                                  | 12                  | 6                       | 75                           | 1,420                          | 67,500             |
| 105,000                               | 9.9                           | 10,630                                         | 10                                  | 11                  | 7                       | 80                           | 1,370                          | 72,000             |
| 133,000                               | 7.5                           | 8,070                                          | 6                                   | 9                   | 11                      | 99                           | 1,290                          | 89,100             |
| 160,000                               | 6.0                           | 6,460                                          | 4                                   | 8                   | 16                      | 120                          | 1,250                          | 108,000            |
| 182,000                               | 5.1                           | 5,510                                          | 3                                   | 7                   | 21                      | 138                          | 1,230                          | 124,200            |



# **Design Results**

### Fluidized Bed

### • Small pressure drop

- − ~0.5 psi
- Function of solids residence time in the absorber

### Footprint

- $-7,000 \text{ ft}^2$
- Similar to wet-scrubbing system

### Sorbent attrition rate

- Assume 6 month replacement
- Increased O&M costs



| Flue Gas Flow per Unit<br>(acfm) | # of Parallel<br>Streams | Superficial Velocity (ft/s) | Sorbent per Absorber (tonnes) | Bed Height<br>(inches) | Pressure Drop<br>(psi) | Footprint (ft²) |
|----------------------------------|--------------------------|-----------------------------|-------------------------------|------------------------|------------------------|-----------------|
| 50,000                           | 24                       | 1.2                         | 50                            | 2                      | 0.08                   | 22,000          |
| 75,000                           | 16                       | 1.8                         | 70                            | 3                      | 0.12                   | 14,000          |
| 100,000                          | 12                       | 2.4                         | 95                            | 4                      | 0.15                   | 11,000          |
| 125,000                          | 9.6                      | 2.9                         | 120                           | 5                      | 0.2                    | 9,000           |
| 150,000                          | 8                        | 3.5                         | 140                           | 6                      | 0.2                    | 7,000           |
| 200,000                          | 6                        | 4.7                         | 190                           | 8                      | 0.3                    | 5,000           |



# Design Results Novel Design: Phoenix System

- Reasonable pressure drop
  - 3 psi
- Footprint
  - 10,000 ft<sup>2</sup>
  - Greater than wet-scrubbing system but within constraints
- No increased sorbent attrition rate



|         | Flowrate<br>per Unit<br>(acfm) | # of<br>Absorption Units<br>(Parallel Streams) | Sorbent Mass<br>per Unit<br>(tonnes) | Total Sorbent<br>Mass Required<br>(tonnes) | Pressure<br>Drop<br>(psi) | Total<br>Footprint<br>(ft²) |
|---------|--------------------------------|------------------------------------------------|--------------------------------------|--------------------------------------------|---------------------------|-----------------------------|
| Case 7  | 30,000                         | 40                                             | 31                                   | 1,260                                      | 4.0                       | 28,000                      |
| Case 8  | 50,000                         | 24                                             | 52                                   | 1,260                                      | 3.2                       | 25,000                      |
| Case 9  | 100,000                        | 12                                             | 105                                  | 1,260                                      | 3.1                       | 18,000                      |
| Case 10 | 150,000                        | 8                                              | 165                                  | 1,320                                      | 2.9                       | 11,000                      |
| Case 11 | 300,000                        | 4                                              | 330                                  | 1,320                                      | 2.9                       | 9,700                       |



# Design Results Summary

- •Fixed Bed System does not meet design constraints
- •Fluidized Bed meets constraints but may have increased sorbent attrition
- Novel Fixed Bed meets constraints in certain configurations

|                        | Flow Rate<br>per Unit<br>(acfm) | Absorber<br>Units | Total Sorbent<br>Mass Required<br>(tonnes) | Pressure<br>Drop<br>(psi) | Total<br>Footprint<br>(ft²) |  |  |
|------------------------|---------------------------------|-------------------|--------------------------------------------|---------------------------|-----------------------------|--|--|
| Conventional MEA       | 250,000                         | 8-10              | N/A                                        | 3-6                       | 5,000-9,000                 |  |  |
| Amine-Enriched Sorbent | Amine-Enriched Sorbent          |                   |                                            |                           |                             |  |  |
| Fixed Bed              | 76,000                          | 63                | 1,600                                      | 6                         | 57,000                      |  |  |
| Fluidized Bed          | 150,000                         | 8                 | 1,100                                      | 0.3                       | 7,000                       |  |  |
| Novel Fixed Bed        |                                 |                   |                                            |                           |                             |  |  |
| Case 5                 | 150,000                         | 8                 | 3,500                                      | 2.2                       | 7,400                       |  |  |
| Case 11                | 300,000                         | 4                 | 1,300                                      | 2.9                       | 9,700                       |  |  |



# **Economic Analysis**Sorbent Capital Costs

•Conventional MEA: 2,700 lb/hr MEA make-up due to attrition

•Fixed Bed Systems: Sorbent replaced every 2 years

•Fluidized Bed: Sorbent replaced every 6 months

|                    | Initial<br>Sorbent Cost<br>(MM \$) | Annual Sorbent<br>Replacement Cost<br>(MM \$ / yr) |
|--------------------|------------------------------------|----------------------------------------------------|
| MEA wet scrubbing* | \$94                               | \$8.1                                              |
| Fixed Bed          | \$15                               | \$7.5                                              |
| Fluidized Bed      | \$11                               | \$22                                               |
| Novel Fixed Bed    |                                    |                                                    |
| Case 5             | \$35                               | \$18                                               |
| Case 11            | \$13                               | \$6.5                                              |

<sup>\*</sup> MEA cost listed is total system cost



# Economic Analysis Plant Performance

|                 | Pressure Drop<br>(psi) | ID Fan Load<br>(MW) | Solvent<br>Pump Load<br>(MW) | Gross<br>Plant Size<br>(MW) | Cost of<br>Electricity<br>(¢/kWh) | Cost of<br>Electricity<br>Increase |
|-----------------|------------------------|---------------------|------------------------------|-----------------------------|-----------------------------------|------------------------------------|
| MEA Scrubber    | 3                      | 22.4                | 3                            | 491                         | 7.56                              | 55%                                |
| Fluidized Bed   | 0.3                    | 6.5                 | N/A                          | 465                         | 6.88                              | 41%                                |
| Novel Fixed Bed | Novel Fixed Bed        |                     |                              |                             |                                   |                                    |
| Case 5          | 2.2                    | 15.9                | N/A                          | 474                         | 6.93                              | 42%                                |
| Case 11         | 2.9                    | 19.4                | N/A                          | 478                         | 6.34                              | 30%                                |

### Solid sorbent CO<sub>2</sub> capture systems have a:

- 1. Smaller parasitic load (no solvent circulation)
- 2. Smaller overall plant size
  - Less steam required for regeneration means less coal burnt
  - Reduced parasitic load draws less power from
- 3. Reduced cost of electricity
  - Smaller, more efficient plant
  - Reduced capital and O&M Costs



# **Economic Performance**

## Sensitivity Analysis



| Property            | "Best Case" Value                   | Baseline Variables                    | "Worst Case" Value                  |  |
|---------------------|-------------------------------------|---------------------------------------|-------------------------------------|--|
| Sorbent Cost        | \$5/kg sorbent                      | \$10/kg sorbent                       | \$15/kg sorbent                     |  |
| Regeneration Energy | 500 BTU/lb CO <sub>2</sub>          | 620 BTU/lb CO <sub>2</sub> [NETL1]    | 2,000 BTU/lb CO <sub>2</sub>        |  |
| Replacement Rate    | Every 4 Years                       | Every 2 Years                         | Every 6 Months                      |  |
| Sorbent Capacity    | 8 moles CO <sub>2</sub> /kg sorbent | 6.4 moles CO <sub>2</sub> /kg sorbent | 3 moles CO <sub>2</sub> /kg sorbent |  |



# **Questions?**



## **Pressure Drop Calculations**

### **Ergun Equation:**

$$\frac{\Delta P}{L} = \frac{150\overline{V_0}\mu(1-\varepsilon)^2}{g_c\Phi_s^2D_p^2\varepsilon^3} + \frac{1.75\rho\overline{V_0^2}(1-\varepsilon)}{g_c\Phi_sD_p\varepsilon^3}$$

 $\Delta P$  = Pressure drop across the fixed bed

 $L \equiv \text{Bed height}$ 

 $V_0$  = Superficial (empty tower) velocity

 $D_p =$ Sorbent particle diameter

 $\mu$  = Flue gas viscosity

 $\mathcal{E}$  = Volume fraction of void spaces in a bed of solids

 $\Phi = \text{Spericity of sorbent}$ 

 $\rho$  = Flue gas density



# **Post-Combustion Current Technology** *Pulverized Coal Power Plant with CO<sub>2</sub> Scrubbing*





# Phoenix<sup>TM</sup> Design "Assumptions" First Glance

### Phoenix<sup>™</sup> System Parameters

- Canister Geometry
  - Canister Length: ~2'
  - Canister Diameter: ~14"
  - Sorbent Bed Thickness: ~4.5"
- 50 ppm H<sub>2</sub>S removal @ 30,000 acfm
- 150 canisters
- Parallel Operation: Only one bank regenerating at a time

### Activated Carbon Parameters

Diameter: 3.6 mm

Density: 0.56 g/cm<sup>3</sup>

Capacity: 0.055-0.09 g H<sub>2</sub>S/cm<sup>3</sup> carbon

- 90-2900 minute regeneration time



# **System Differences**

### First Glance

|                          | Species<br>Concentration | Removal Rate | Sorbent Volume Required per minute of flow |
|--------------------------|--------------------------|--------------|--------------------------------------------|
| H <sub>2</sub> S Cleanup | 50 ppm                   | 9 lb/hr      | 1,240 cm <sup>3</sup> /min                 |
| CO <sub>2</sub> Capture  | 10-13%                   | 27,000 lb/hr | 307,000 cm <sup>3</sup> /min               |

### **CO<sub>2</sub> Capture System Requires:**

- ~3,000 times the absorption rate
- 250-400 times the sorbent volume
- 32 Phoenix<sup>TM</sup> units operating in parallel (30,000 cfm units)



## **Preliminary System Design**

### A Scaled-Up Phoenix System

|                                                       | Number of Canisters | Sorbent Bed<br>Thickness | Canister<br>Diameter | Canister<br>Length |
|-------------------------------------------------------|---------------------|--------------------------|----------------------|--------------------|
| Phoenix Unit                                          | 150                 | 4.5"                     | 1.2'                 | 2'                 |
| Scaled-Up Phoenix<br>Unit for CO <sub>2</sub> Capture | 320                 | 6"                       | 2.8'                 | 6'                 |

### Increased canister size

3 times longer, 2.3 times greater diameter

### Double the unit height

Twice as many canisters per bank

### One additional bank

20 additional canisters



# Preliminary System Design Scale-Up Results

### Increased canister size lowers △P

- Increased sorbent volume at the same bed thickness
- Increased surface area reduces linear velocity
- Offset effects of smaller particle diameter

### Increased unit height

- Utilizes available space
- Reduces total system footprint

### Additional bank

- Further reduces volumetric flow to any canister, and therefore linear velocity and pressure drop
- Additional sorbent capacity



# Preliminary System Design Results

- Preliminary assessment of Phoenix<sup>™</sup> System for CO<sub>2</sub> Capture looks promising
- Requires scale-up
  - Increased adsorption rate
  - Increased sorbent volume required for same volumetric flow rate
- Additional investigation is warranted and should be pursued!



## **MEA Scrubbing Up-Close**

2000 Baseline Case



| Reboiler Heat Duty (Btu/lb CO <sub>2</sub> ) | 1,621  | CO <sub>2</sub> Rich Loading (mol CO <sub>2</sub> /mol MEA) | 0.441 |
|----------------------------------------------|--------|-------------------------------------------------------------|-------|
| MEA Concentration (wt. %)                    | 27     | CO <sub>2</sub> Lean Loading (mol CO <sub>2</sub> /mol MEA) | 0.143 |
| MEA Circulation Rate (GPM)                   | 24,500 | Scrubber/Stripper Pressure Drop (Psia)                      | 3/3   |
| Absorption (°F)                              | 130's  | Induced Draft Fan (MW)                                      | 15    |
| Regeneration (°F)                            | 250's  | MEA Circulation Pumps (MW)                                  | 2     |



**FG to Stack** 135°F/15.4 Psia

Source: Case 7A from "Evaluation of Innovative Fossil Fuel Power Plants with CO2 Removal", DOE\_EPRI\_1000316